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Displacive modulation is defined as periodic distortion with an incommensurable k vector. If the phase 
of the distortion is t, a symmetry operation can be expressed as a normal space-group operation com- 
bined with a sign reversal and/or a shift in the variable t. Earlier results obtained by de Wolff [Acta Cryst. 
(1974), A 30, 777-785] are reformulated in terms of these operations. The periodic functions defining 
the displacements of two symmetry-related atoms are shown to be related by a simple equation. Applica- 
tions to published structures are given. The validity of this equation depends on a symmetry-adapted 
choice of the vector k. It is shown by a two-dimensional example that there are cases for which that choice 
of k requires the introduction of 'improper symmetry translations' with an extra t shift of ½ or ½. The 
ensuing Bravais lattice types are similar to those used for the description of magnetic symmetry. 
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1. Introduction 

A crystal structure is said to be displacively modulated 
if it can be derived from a normal structure, the 'basic 
structure' with N atoms per unit cell, by displacing 
all atoms as follows: (a) if N = 1, an atom of the basic 
structure situated at the position r with respect to 
some fixed origin in the crystal, is given a displacement 
ul(k.r).  Here k is the 'modulation vector', and ul(a) 
is a periodic vector function: ul(~)= ul(a + 1). It follows 
that displacements are the same for atoms in equi- 
distant planes perpendicular to k and spaced 2 =  1/Ikl 
apart;  (b) if N >  1, each of the N atoms in the unit 
cell can have its own modulation function u~(a), again 
obeying ui(~)=u~(a+ 1). The displacement for atoms 
of the ith kind is now given by u~(k.r); k is the same 
for all i. 

The diffraction pattern of such a structure is known 
to contain extra reflexions ('satellites') at positions 
H + m k  in reciprocal space, where H is a basic-struc- 
ture reciprocal-lattice vector and rn a small integer, 
the 'order'  of the satellite. 

Many patterns of this type have been encountered 
in X-ray, electron and neutron diffraction. Within the 
last decade, several of these patterns have been reliably 
analysed in terms of displacive modulation, cf. ex- 
amples in §3. The displacements usually amount  to 
0-1-1 A so that modulation functions can be deter- 
mined with a good relative precision; in some cases 
they show significant deviations from harmonicity. 

All these structures could be regarded as mere super- 
structures if the components of k were simple frac- 
tions. This is not the case, however; some such com- 
ponents have even been shown to depend smoothly 
upon the temperature. Therefore we have to define 
modulated structures as a separate class, for which k 
is incommensurable with the basic structure. Ac- 
cordingly, the symmetry of modulated structures is 
low when judged by conventional criteria. In partic- 

ular, the incommensurabili ty of k means that true 
translational symmetry can be present in at most two 
dimensions (e.g. in the ab plane if kllc*). 

However, a new kind of symmetry can be defined 
which restores the lost elements [-de Wolff (1974), to 
be referred to as (I)]. In §2 we shall recapitulate the 
results of (I). It is difficult to apply this new symmetry 
concept without knowledge of the relation between 
the displacements of symmetry-related atoms. This 
relation will be derived in §3, whereas §4 discusses a 
new type of Bravais lattice pertaining to a certain 
class of modulated structures. 

The symmetry description presented here is easily 
adapted to the case where a scalar quanti ty is modu- 
lated, as in substitutional modulation. Magnetic 
modulations (e.g. helical magnetic structures) are not 
so simple, the magnetic moment  being an axial vector, 
though a similar treatment seems possible. Finally it 
should be stressed that we deal here with structures 
having a single modulation vector k (of. the more 
general treatment by Janner & Janssen, 1976). 

2. The main principles 

First, the results of (I) will be illustrated by looking 
at the one-dimensional case in which k, r and u are 
scalars: k, x, and u=ui(kx). The latter equation will 
now be written more explicitly for the ith kind of 
atom, in the pth unit cell. If its fractional coordinate 
in the basic structure is x ° we have for this atom x = 
p + x °, and we write 

u(i,p, t)=u,[k(p + x °) + t] . (1) 

The addition of the phase parameter t to the argu- 
ment of each ui is the essential feature upon which 
the new symmetry concept is based. It is permissible 
since for an incommensurable k, a change of t does 
not effectively change the structure: after the change, 
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the same sequence of displacements occurs elsewhere 
in the chain, with a precision limited only by the dis- 
tance one is prepared to go in looking for it. (Changing 
t also leaves the diffraction intensities the same.) 

The initial symmetry translations x ' = x + n  (n= 
integer) of the basic structure are lost in the modulated 
structure. However, if we add the operation t ' =  t - k n ,  
they are restored without any approximation. This is 
seen by substitution in (1), which yields 

u(i ,p + n, t') = u(i,p + n, t - kn) = u(i,p, t) . 

Thus, replacing t by t ' =  t - k n  alone has the effect of 
attaching the displacement of each atom to the cor- 
responding atom n unit cells away in the + x  direc- 
tion. As a result, one finds exactly the same situation 
at x ' =  x + n as (before changing t) at x. Fig. 1 illustrates 
the case n =  1. (The replacement of x by x' could be 
regarded as a movement of the crystal; however, it 
is easier to understand these and all further operations 
if one leaves the crystal where it is.) Moreover addition 
of any integer s to t is also an identity operation, be- 
cause of the periodicity of ui(oO. Hence the group of 
symmetry translations consists of operations (n, 
- k n  + s),  or in full: 

x'  = x + n t' = t -  kn + s (n, s integer). (2) 

We now turn our attention to general symmetry 
operations. Just as for translations, such operations 
can be expected to affect t as well as x. The fact that 
t is a constant for the whole crystal forbids interde- 
pendence of x and t, and this leads to the form 

x ' = T x + o ,  t ' = e t - k o + ~ l  171=l~l=l. (3) 

The term - k 0  in (3) merely serves to accomodate 
symmetry translations (2) with an integer value (s) of 
r/. Conservation of lengths prescribes ?, = _+ 1, whereas 
e=  ___ 1 follows from the condition that the trivial 
symmetry translations (0,s) must be conserved. 

We shall now prove that 7=e.  Starting from the 
symmetry translation ( 1 , - k )  the following sequence 
of symmetry translations is produced: transformation 
with (3): (7 , -ek) ;  multiplication by ),: (1,-Tek), since 
~2 = 1 ; subtracting (1, - k): [0,(1 - ye)k]. This last sym- 
metry translation is of the type (0, s) which has to have 
integer s. We conclude that 7 e - - -  1 can occur only 
if k=½, a value clearly unacceptable for modulated 
structures. Hence 7e = + 1, which is equivalent to e = 7. 
This proof is illustrated in Fig. 2 showing the impos- 
sibility of e = - 1 when 7 = + 1. 

If we call the homogeneous part of (3) (x '=  7x and 
t ' = e t )  a point-group operation, it follows from 7=  
that these operations act on x just as they act on t. 

The corresponding property for three-dimensional 
crystals is" point-group operations act on certain 
vectors just as they act on t. The proof consists in ap- 
plying a projection operator. This was done in (I) with 
respect to a reciprocal-lattice vector. It can equally 
well be done with respect to an arbitrary symmetry 
translation. The latter procedure was actually carried 

out above. We shall not repeat it for the three-dimen- 
sional case but merely state the result in terms of ap- 
propriately generalized equations (1)-(3). 

Displacements similar to (1): 

u(i, p, t)= ui[k. (p + r °) + t] (4) 
where p now is a basic-structure lattice vector, and 
r ° defines the position of the ith atom within the unit 
cell, are shifted to atoms a lattice vector n away if t 
is replaced by t ' = t - k . n .  The group of symmetry 
translations consists of operations 

r ' = r + n  t ' = t - k . n + s  (5) 

which we denote by ( n , -  k.  n+s).  The general sym- 
metry operation takes the form 

r ' = S r + Q  t ' = e t - k . o + r /  e = _ _ l  (6) 

where the first equation is an operation which, as we 
will show in §3, belongs to the basic structure's space 
group; S is a point-group operation. 

Consider the group of symmetry operations (6) 
valid for a given modulated structure. The different 
pairs {S,e} occurring in these operations again define 
a point group, just as {7,e} in the one-dimensional 
case. The above-mentioned property is: there exist 
vectors v which satisfy Sv=ev for all point-group 
elements (compare 7x = ex in one dimension). 

The set of all such vectors constitutes either a line, 
a plane or the whole space; this set will be called Lt. 
The three cases correspond to k having one, two or 
three independent irrational components. Stated in 
the language of group theory: the representation e of 
the point group occurs at least once in the representa- 
tion S. The number of times it actually occurs is the 
dimension of Lt. In terms of the systems introduced 
in (I)'s Table 1, L, is the plane perpendicular to the 
unique axis in the monoclinic system II* and Lt is 
that axis itself in the remaining systems, except the 
triclinic where it is the whole space. 

In order to describe a given modulated structure, 
various choices of k are possible. For instance, if there 
is a description with k = k l ,  then there is another with 
k=k~  + H  (H being a reciprocal vector of the basic 
structure) differing from the first merely by phase 
changes in the functions ui(~). We shall show in §4 
that k may always be chosen to lie within L,. This 

* Here we use the three-dimensional  ' sys tem of the average 
structure '  and distinguish the two monocl inic  systems by the num- 
bers of their four-dimensional  counterpar ts ,  II and III. 

P o 
Fig. 1. Modula ted  chain. Small dots:  basic structure. Large dots, 

thick line: modula ted  structure and u curves plot ted as a function 
of x. Circles, thin line: same for t ' = t - k ,  which moves each dis- 
placement  u to the next a tom, e.g. from P to Q. If x '= x + 1, the 
si tuation for any (x,t) equals that  for (x',t'). 
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means that for each symmetry operation (6) of the 
structure 

Sk=ek  (7) 

a result which we shall use in the next section. 

3. Symmetry relations 

Suppose an atom of the ith kind is imaged by the 
symmetry operation (6) into one of the jth kind. Ab- 
breviating the basic structure position vector p + r  ° 
by the symbol r°p, we then obtain 

0 • t r~q + u(j, q, t ) = S[r°p + u(i, p, t)] + Q. (8) 

We assume that the average displacements vanish, e.g. 

f l u ( i , p , t ) d t = O .  (9) 

Integrating both sides of (8) over a period of t and 
using (9) we find 

o o (10) % = S% + ~ .  

o,k L .- --"] ,J 
/ 

t + ( 0 , 2 k )  

t-k 

x x+l 
Fig. 2. In this t - x  plot the translation from Fig. 1 is the vector 

(1, -k). If a symmetry operation x ' =  x, t ' =  - t  existed, this would 
act like a mirror producing (1,k) and, thereby, (0,2k), which 
yields k = ½. 

(a) (b) 

Fig. 3. When the diffraction pattern has h + k = e v e n  for all main 
and satellite reflexions (C centring), the functions u(~) are the 
same for atoms x,y,z and ½+x,½+y,z. This is expressed correctly 
by (b), not by (a). 

- m . . . .  m . . . . .  

a 

m l  

Fig. 4. Mirrors 'ml', for which the mirror operation includes a 
shift q =½ in t. Small and large dots as in Fig. 1. 

Thus the r operation of (6) belongs to the space group 
of the basic structure, and S to its point group. Sub- 
tracting (10) from (8) yields 

u( j ,q , t ' )=Su( i ,p , t )  , 

or, from (4) 
o uj(k. rjq + t')= Sui(k. r°p + t). ( 11 ) 

We substitute (10) and (6) in the argument of u j: 

o (SrOp+Q)+et . Q+rl k . r j q + t ' = k .  - k  

= k . ( S r ° v ) + e t + r l  . (12) 

Now, because of (7) and since e - i =  

k(Sr°,) = (S - l k ) .  r°p = e k .  r°p.  

Substitution in (12) and in (11) yields 

u j [ e ( k . r ° p + t ) + q ] = S u i ( k . r ° p + t )  . (13) 

This must be true for any value of t, or of 

~ = e(k . r°p + t ) + q , 

so the required relation is 

uj(~) = Sui[e(o~ - r/)]. (14) 

With the aid of (14), extinction conditions can be es- 
tablished, enabling us to derive symmetry elements 
from systematic extinctions. Knowing these elements, 
one can use (14) again to find the structure factors 
given in .principle in (I), equation (13). 

After the structure parameters have been found, 
(14) is once more needed to obtain a picture of the 
structure. The whole procedure is of course essentially 
the same as in the analysis of normal structures. In 
published work, however, elaborate ad hoc calcula- 
tions have often been made where (14) could have been 
applied instead. This will now be illustrated by some 
examples. 

(i) The parameters of a symmetry translation (5) are 
S = 1, e = + 1, r/= 0; hence (14) yields uj(~)= ui(~ ). This 
result is less trivial when there are centring conditions, 
e.g. h + k = e v e n  for a C-centred lattice. As long as 
such conditions hold for all main reflexions as well 
as satellites, the result is the same. This case occurs in 
K2Mn(C204)2.2H20 (Schulz, 1974); hence the slight 
phase shift assumed by Schulz to exist between atoms 
connected by ~ + ½ b  is not in accordance with the 
pattern (Fig. 3). (Actually the choice by Schulz of a 

* , 
short modulation vector bsu b masked the centring, 
which is obvious only for k = b*-b~ub.) 

(ii) A reflexion condition k=0 ,  m=even occurs in 
two monoclinic II-structures" (TTF)7I 5 (Johnson & 
Watson, 1976) and NazCO3 (van Aalst, den Hollander, 
Peterse & de Wolff, 1976). (In the first case the con- 
dition applies to a description based on the 'TTF- 
subcell'.) It can be interpreted as a mirror plane per- 
pendicular to b accompanied with a 't-glide', that is, 
r/=½. Such a mirror element 'ml'  is illustrated in Fig. 
4, for a two-dimensional structure. Since the mirror 

AC 33A-10 
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plane coincides with L, and thus leaves k unchanged, 
~= + 1, c f  (7). For the components u" (n= 1,2,3) of 
u, (14) gives 

uJ(~) = u~'(~ +½),  u~(~) = -u~(~ +½), u~(~)=u~(~ +½). 
(15) 

, P O 9  9 o 9  

In a projection of the structure along b, atoms j and i '~t " m 
together are invariant for t' = t + ½ so that k is apparent- .[ 

T ly doubled, which is the above reflexion condition. ~b 
Relations equivalent to (15) were obtained by Johnson 

o & Watson (1976) in a very indirect manner. For ~ o9 ~ o 
Na2CO3 (15) was stated without adequate proof. 

(iii) In thiourea (Shiozaki, 1971) the reflexion con- 
dition in the (hOl) zone is h + / + m = e v e n .  Here the 
explanation is a mirror plane with an n glide as well 
as a t glide. Since the vector Q = ½ a + ~  for the n glide 
does not figure in (14), the relations (15) are valid here o ,p ~, o 
as well. Apart from a deliberately made approxima- * m' ,,7' m '~ 
tion, (15) agrees with Shiozaki's results, though again J, 
the symmetry operation was not explicitly stated. ~ l ~ 

Symmetry operations with e = -  1 do not give rise 
to satellite extinctions. A two-dimensional example o 
(m') is easily drawn with the help of (14). For instance, ~ ~ ~ o ~' 
an atom imaged by m' in itself (which in the basic 
structure lies on the mirror line) yields ui(c0 = ui(-~) 
for displacements parallel to m', as in Fig. 5. 

4. Proper and improper symmetry translations 

A new kind of symmetry translation can occur in 
modulated structures as defined in § 1. It can be de- 
scribed formally by (5), but unlike the translations con- 
sidered so far it has non-integer values for the shift 
s of the t parameter. The following two-dimensional 
example shows how it may arise from a combination 
of known elements, as shown in Fig. 6. 

The basic structure is orthogonal, plane group pm. 
We assume modulation with a vector k parallel to a, 
and we assign t glides r/=½ to every second mirror 
line of the basic structures. The ensuing sequence of 
alternating m and ml lines fits into a group very 
similar to the normal plane group cm with its alterna- 
tion of m and g lines. The translation b is of the new 
kind since it is the product of adjacent m and ml 
operations and therefore has a shift in t equal to the 
sum 0 +½=½ of their r/values. 

The reciprocal net of this structure shows another 
anomaly (Fig. 7): there are satellites which cannot be 
assigned to a main reflexion with integer indices. We 
have to allow half-integral values of the index k, and 
the reflexion condition is 2k+m=even .  Fig. 7 also 
shows that the structure is not really anomalous at 
all. If we describe it by the oblique modulation vector 
k', all satellites can have integer indices triplets (hkm). 
Moreover, the translation b again falls into the ordinary 
kind, with integer s in (5). 

However, the description with k' is undesirable for 
practical reasons. The vector k' is ambiguous, since 

its mirror image k" is equivalent to it. It does not lie 
within L, (here the a axis), so that (7) and especially 
(14) are not valid. Most important is the fact that a 
description with k' as the modulation vector would 

9 0 9  9 o 9  ~o 9 9 0 9  909 
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Fig. 5. Mirrors m' (x '=  - x ,  t '=  - t). (a) Basic structure; (b) modulated 
with displacements parallel to b, while k is parallel to a; (c) same, 
one row magnified x 3 in the b direction showing the modulation 
functions. Two mirror-related atoms have ui(e)=u~(-e)  re- 
sulting in mirror lines (one shown as a dot-dash line) for the 
curves. 

Fig. 6. A structure containing a sequence of alternating rn and ml 
mirrors. Small and large dots as in Fig. 1. 
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make it necessary to include components of k in 
directions perpendicular to Lt (here ½b*) in the nota- 
tion for the symmetry group. Therefore we prefer 
(a) to normalize the modulation vector by always 
choosing it in Lt, (b) to express the ' improper '  sym- 
metry translation (here b) in the lattice symbol. This 
can be done by using symbols for magnetic Bravais 
lattices, such as PZb in the case of Fig. 6, cf. Opechowsky 
& Guccione (1965). Indeed the value of s is, with one 
exception, restricted to ½, so the extra shift, being a 

.I b° b 
o o 4 ~ o o  oe, o o o  

• oi  o• • ao • o o • • • 
O O ~ O O  

o o o o  • o o o  k" 
O 0 0 0 0  O O O O O  

(a) • • • 

(b) 

Fig. 7. The reciprocal net of Fig. 6. (a) Overall picture; (b) sur- 
roundings of the origin, magnified. 

binary operation which commutes with all transla- 
tions, is formally equivalent to time reversal. 

The exception is the trigonal system which allows 
s = _ ½ for improper translations. A table of Bravais- 
lattice types including all inequivalent lattices with 
and without improper symmetry translations, for each 
of the seven systems from (I) Table 1 is given in Table 1.* 

The author gratefully acknowledges various stimu- 
lating discussions with Professor A. Janner and Dr 
T. Janssen (Nijmegen) as well as their reading two 
earlier versions of this paper. 

* Table 1 has been deposited with the British Library Lending 
Division as Supplementary Publication No. SUP 32323 (3 pp.). 
Copies may be obtained through The Executive Secretary, Inter- 
national Union of Crystallography, 13 White Friars, Chester CH1 
1NZ, England. 
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A computer model-building program (suitable for interactive use on a small machine) is described. The 
program fits a polymer chain with idealized stereochemistry to a number of guide coordinates, by rotation 
about single bonds. It has been used to record accurate atomic coordinates from a skeletal wire model of a 
protein in a fraction of the time which manual measurement would have taken. 

Introduction 

A sufficiently large number of protein and nucleic acid 
structures have now been solved at atomic resolution, 
that the strategy of structure determination and refine- 
ment has become well-established. Much thought is 
currently being given to automation of the more rou- 
tine aspects of such work such as X-ray data collection. 
One step which has not generally been automated is 
the measurement of atomic coordinates from a skeletal 
wire model which has been fitted to an electron density 
map. One approach to this problem is to abandon 
physical models, and to carry out the fitting by com- 
puter, either tracing the polymer chain automatically 
(Greer, 1976), or building a computer model to fit the 
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density while both are displayed on an interactive 
graphics terminal (Feldmann, 1976). Nonetheless, a 
physical model has undeniable advantages for visual- 
izing the structure as a whole, and it seems unlikely that 
the traditional methods will be totally supplanted. 

The computer model-building program described 
here may be used in conjunction with a model to gen- 
erate a stereochemically acceptable set of coordinates 
with a minimum of measurement. 

Computer model-building 

A preliminary to the refinement of a macromolecular 
structure is the recording of the coordinates of each 


